
EE 330

Lecture 18

• P-channel Modeling

• Relationship Between Switch-Level 

and Higher Level Models

• CMOS Process Flow



Exam 1        Friday           Sept 27

Exam 2        Friday           October 25

Exam 3        Friday           Nov 22

Final Exam  Monday       Dec 16  12:00 - 2:00 

PM 

Fall 2024 Exam Schedule



Prelab Announcement

A Pre-Lab for Lab 7 has been posted on the class WEB site



Graphical Representation of MOS Model
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Model Extension Summary
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Model Parameters : {μ,COX,VTH0,φ,γ,λ}
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Operation Regions by Applications
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Most analog circuits operate in the saturation region

                                    (basic VVR operates in triode and is an exception)

Most digital circuits operate in triode and cutoff regions and switch 

between these two with Boolean inputs

Review from last lecture



BSIM model 

Note this model has 95 model parameters !

Review from last lecture



ID

VDS

VGS1

VGS2

VGS3

Actual

Modeled with one value of L, W

Modeled with another value of L, W

Model Errors with Different W/L Values

Binning models can improve model accuracy



BSIM Binning Model 
- multiple BSIM models !

With 32 bins, this model has 3040  model parameters !

- Bin on device sizes



ID

VGS1

VGS2

VGS3

TT

FS or FF (Fast n, slow p  or Fast n, fast p )

SS or SF (Slow n, slow p  or Slow n, fast p )

VDS

Model Changes with Process  Variations

   (n-ch  characteristics shown)

Corner  models can improve model accuracy



BSIM Corner Models with Binning 

- bin on device sizes

With 32 size bins and 4 corners, this model has 15,200  model parameters !

- Often 4 corners in addition to nominal  TT, FF, FS, SF, and SS



TT

Typical-Typical

SS 

(Slow n, Slow p)

SF 

(Slow n, Fast p)

FS 

(Fast n, Slow p)

FF 

(Fast n, Fast p)


Basic Model

Corner Model

Corner Models

Applicable at any level in model hierarchy (same model, different parameters)

Often 4 corners (FF, FS, SF, SS) used but sometimes many more

Designers must provide enough robustness so good yield at all corners

Review from last lecture
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Hierarchical Model ComparisonsReview from last lecture
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VDS

VGS1

VGS2

VGS3

Actual

Modeled with one model

Local Agreement 

with Any Model

(and W/L variations or 

Process Variations)

(and W/L variations or 

Process Variations)

(and W/L variations or 

Process Variations)
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Process Variations)

The Modeling Challenge
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Difficult to obtain analytical functions that 

accurately fit actual devices over bias, size, and 

process variations



How many models of the MOSFET do we have?

Switch-level model  (2)

Square-law model (with λ and bulk additions)

α-law model (with λ and bulk additions)

BSIM model

Square-law model

BSIM model (with binning extensions)

BSIM model (with binning extensions and process corners)

Review from last lecture



Model Status

Simple dc Model

Small 

Signal 

Frequency 

Dependent Small 

Signal 

Better Analytical  

dc Model

Sophisticated Model 

for Computer 

Simulations 

Simpler dc Model

Square-Law Model

Square-Law Model (with extensions for λ,γ effects)

Short-Channel α-law Model

BSIM Model

Switch-Level Models

    • Ideal switches

    • RSW and CGS
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Review from last lecture



Relationship between N-channel and P-channel 

models

Basic models for n-channel and p-channel models are the same

Major difference is in values for model parameters and direction of 

electrical port variables



n-channel …. p-channel modeling

( )

GS Tn

DS

D n OX GS Tn DS GS DS GS Tn

2

n OX GS Tn GS Tn DS GS Tn

G B

0 V V

VW
I μ C V V V V V V V V

L 2

W
μ C V V V V V V V

2L

I =I =0

Tn


 

  

= − −   −  
 


−   −



0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

VDS

ID

VGS1

VGS2

VGS4

VGS3

GS4 GS3 GS2 GS1V V V V > 0  

VDS

D

BG

S

VDS

VGS
VBS

ID

IG IB

D D

S S

G G

D

BG

S

Gate DrainSource 

Bulk

n-channel MOSFET

Positive VDS and VGS cause a positive  ID

(for enhancement devices)



n-channel …. p-channel modeling
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Gate DrainSource 

Bulk

p-channel MOSFET

Negative VDS and VGS cause a negative  ID

(for enhancement devices)

Functional form of models are the same, just sign differences and some 

parameter differences (usually mobility is the most important)

0TpV 



n-channel …. p-channel modeling
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Gate DrainSource 

Bulk

p-channel MOSFET

(for enhancement devices)

• Actually should use COXp and COXn but they are 

usually almost identical in most processes

•  μn ≈ 3μp

• May choose to model –ID which will be non-

negative
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n-channel …. p-channel modeling
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Gate DrainSource 

Bulk

p-channel MOSFET

(for enhancement devices)
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Alternate equivalent representation w/o sign convention

These look like those for the n-channel device but with |   |
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n-channel …. p-channel modeling

Models essentially the 

same with different signs 

and model parameters



Model Relationships

Determine RSW and CGS  in the switch-level model for an n-channel MOSFET 

from square-law model in a CMOS process if L=1u, W=1u

(Assume μnCOX=100μAV-2, COX=2.5fFu-2,VT0=1V, VDD=3.5V, VSS=0)
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when SW is on, operation is “deep” triode

VGS 

RSWn

CGSn

S

DG 



Model Relationships

(Assume μnCOX=100μAV-2, COX=2.5fFu-2,VT0=1V, VDD=3.5V, VSS=0)
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Model Relationships

(μpCOX=33μAV-2  , μnCOX=100μAV-2 ,  COX=2.5fFu-2,VT0=1V, VDD=3.5V, VSS=0)
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T

When SW is on, operation is “deep” triode

Determine RSW and CGS  for an p-channel MOSFET from square-law model 

in the 0.5u ON CMOS process if L=1u, W=1u

Observe µn\ µp≈3
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Model Relationships
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Determine RSW and CGS  for an p-channel MOSFET from square-law model 

in a  CMOS process if L=1u, W=1u

(μpCOX=     μnCOX,  μnCOX=100μAV-2 , COX=2.5fFu-2,VT0=1V, VDD=3.5V, VSS=0)

Observe the resistance of the p-channel device is approximately 3 times 

larger than that of the n-channel device for same bias and dimensions !
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This is due to the difference in mobility between n-type and p-type materials 



Modeling of the MOSFET
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Small-Signal Model

Goal with small signal model is to predict 

performance of circuit or device in the 

vicinity of an operating point

Operating point is often termed Q-point



Small-Signal Model
y

x

Q-point

XQ

YQ

• Analytical expressions for small signal model will be developed later

• Behaves linearly in the vicinity of the Q-point



Basic Devices and Device Models

• Resistor

• Diode

• Capacitor

• MOSFET

• BJT

Lets pick up a discussion of another 

part of the  Technology Files before 

moving to BJT



Technology Files

• Design Rules

• Process Flow (Fabrication Technology)

• Model Parameters



n-well

n-well
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Bulk CMOS Process Description
• n-well process

• Single Metal Only Depicted

• Double Poly

− This type of process dominates what is used for high-volume “low-

cost” processing of  integrated circuits today

− Many process variants and specialized processes are used for lower-

volume or niche applications

− Emphasis in this course will be on the electronics associated with the 

design of integrated electronic circuits in processes targeting high-

volume low-cost products where competition based upon price 

differentiation may be acute

− Basic electronics concepts, however, are applicable for lower-volume 

or niche applicaitons 



Components Shown

• n-channel MOSFET

• p-channel MOSFET

• Poly Resistor

• Doubly Poly Capacitor
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D’



Consider Basic Components 

Only

Well Contacts and Guard Rings Will be 

Discussed Later
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B’B
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A A’

B’B

n-channel MOSFET
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A A’

B’B

n-channel MOSFET

Capacitor

p-channel MOSFET

Resistor
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n-well
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n-well mask
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Detailed Description of First 

Photolithographic Steps Only

• Top View

• Cross-Section View



~        

Blank Wafer

p-doped Substrate

ExposeDevelop

Photoresistn-well Mask

Implant

       

A A’

B’B

Will use positive photoresist
(exposed region soluble in developer)      



A-A’ Section

B-B’ Section

PhotoresistN-well MaskExposureDevelop
Shown as mask but actually projection through reticle



A-A’ Section

B-B’ Section

Implant



N-well Mask

A-A’ Section

B-B’ Section
n-well



n-well

n-well
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n-well mask

active mask
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Active Mask
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B’B

Active Mask



Active Mask

A-A’ Section

B-B’ Section

Field Oxide Field Oxide Field Oxide

Field Oxide
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n-well mask

active mask

Poly I mask
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A A’

B’B

n-channel MOSFET

Capacitor

P-channel MOSFET

Resistor

Poly plays a key role in all four types of devices !



Poly 1 Mask

A-A’ Section

B-B’ Section

Gate Oxide Gate Oxide
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Poly II mask
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Poly 2 Mask
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Poly 2 Mask



Poly 2 Mask

A-A’ Section

B-B’ Section



n-well

n-well

n-

p-



Poly II mask

p-select mask

n-select mask
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P-Select
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B’B

P-Select



P-Select Mask – p-diffusion

A-A’ Section

B-B’ Section

p-diffusion

Note the gate is self aligned !! Note COXn=COXp !!



n-Select Mask – n-diffusion

A-A’ Section

B-B’ Section

n-diffusion
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Poly II mask

p-select mask

n-select mask

contact mask
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B’B

Contact Mask



Contact Mask 

A-A’ Section

B-B’ Section
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Metal 1 mask

Via  mask

Metal 2 mask

Pad Open mask
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Metal 1 Mask



A A’

B’B

Metal 1 Mask



Metal Mask 

A-A’ Section

B-B’ Section



Should discuss Metal 2 mask  too and mention why we 

can’t go directly from Metal 2 to active  

Should also indicate why, on a multi-metal process that 

we are restricted from going from one level to another 

only.  Else comments later about what can and can’t be 

done don’t make any sense. 
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A A’

B’B

n-channel MOSFET

Capacitor

P-channel MOSFET

Resistor



Should now know what you can do in this process !!

Can poly be connected to active under gate?

Can poly be connected to active any place?

Can metal be placed under poly to isolate it from bulk?

Can metal connect to active?

Can metal connect to substrate when on top of field oxide?

How can metal be connected to substrate?

Can metal 2 be connected directly to active?

Could a process be created that will result in an answer of YES to most of above?

Can metal 2 be connected  to metal 1?

Can metal 2 pass under metal 1?



Semiconductor and 

Fabrication Technology

CAD Tools

Device Operation 

and Models

Circuit Structures and 

Circuit Design

How we started this course



Semiconductor and 

Fabrication Technology

CAD Tools

Device Operation 

and Models

Circuit Structures 

and Circuit Design

Thanks for your patience !!

The basic concepts should have now come together



Stay Safe and Stay Healthy !



End of Lecture 18
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